2014- FÍSICA DE PARTÍCULAS - 2

- 8. a) Indique cuántos mesones diferentes se pueden obtener con 1,2,3,4,5,6 sabores.
- b) Idem para bariones.
- c) Con los quarks u,d,s,c construya una tabla con todos los bariones posibles. Indique cuántos tienen encanto +1, +2, y +3.
- 9. De Rújula, Georgi,y Glashow (Phys. Rev. D12, 147 (1975)) estimaron las masas de los quarks m_u = m_d = 336 MeV/ c^2 , m_s = 540 MeV/ c^2 y m_c = 1500 MeV/ c^2 (m_b \cong 4500 MeV/ c^2). Si la energía de ligadura media para el octete bariónico es 62 MeV calcule las masas del octete y compare con los valores dados por PDG.
- 10. Use la información disponible en PDG para el protón y el neutrón respecto del radio de carga para hacer un modelo sencillo de la densidad de carga.
- a) Calcule la autoenergía de estas densidades de carga.
- b) Ajuste los parámetros de forma que los radios de carga sean los dados en PDG.
- c) Investigue lo que este modelo predice para los momentos magnéticos.
- 11. Asuma que el núcleo de uranio se rompe espontáneamente en dos partes iguales.
- a) Estime la reducción de energía electrostática del núcleo.¿Cuál es la relación de esta energía con la del cambio total en energía? (Asuma distribución de carga uniforme; radio nuclear = $1.2 \times 10^{-13} \, \text{A}^{1/3} \, \text{cm}$)
- b) Estime el cociente entre la energia liberada por gramo de uranio por fisión y gramo de TNT al explotar.
- c) Estime el número medio de fisiones en un reactor de potencia de 100 MW y el consumo, en gramos, de uranio en 30 años de vida útil.
- 12. a) Escriba el diagrama de más bajo órden para la difusión fotón-fotón: $\gamma + \gamma \rightarrow \gamma + \gamma$.
- b) Escriba los 17 diagramas de cuarto orden (4 vértices) para la difusión Compton (diagramas no conectados no contribuyen).
- c) Escriba los diagramas de más bajo orden para el proceso $e^+ + e^- \rightarrow W^+ + W^-$.
- 13. a) ¿ Qué decaimiento le parece más probable: $\Xi^- \to \Lambda + \pi^-$ ó $\Xi^- \to n + \pi^-$? Explique su respuesta y compárela con los datos experimentales.
- b) ¿ Qué decaimiento del mesón D^0 ($c\overline{u}$) le parece más probable ? Argumente.

$$D^{\circ} \rightarrow K^{\scriptscriptstyle -} + \pi^{\scriptscriptstyle +} \; , \qquad \qquad D^{\circ} \rightarrow \pi^{\scriptscriptstyle -} + \pi^{\scriptscriptstyle +} \; , \; \acute{o} \qquad \qquad D^{\circ} \rightarrow K^{\scriptscriptstyle +} + \pi^{\scriptscriptstyle -}$$

Dibuje los diagramas de Feynman, explique su respuesta y compare con los datos experimentales (una de las predicciones del modelo de Cabibbo/GIM/KM fue que los mesones con encanto debían decaer preferentemente a mesones extraños, aunque energéticamente el decaimiento a dos piones está favorecido).

- c) ¿ Los mesones B deben decaer preferentemente a D, K ó π ?
- 14. Examine los siguientes procesos e indique cuáles son posibles o imposibles, de acuerdo al Modelo Estándar, indicando la interacción responsable del decaimiento. En caso de que el decaimiento no sea posible, indique que ley de conservación lo prohibe.

a)
$$p + \overline{p} \to \pi^+ + \pi^-$$
 b) $\eta \to \gamma + \gamma$ c) $\Sigma^0 \to \Delta + \pi^0$ d) $\Sigma^- \to n + \pi^-$

e)
$$e^+ + e^- \rightarrow \mu^+ + \mu^-$$
 f) $\mu^- \rightarrow e^- + \overline{\nu}_e$ g) $\Delta^+ \rightarrow p + \pi^0$ h) $\overline{\nu}_e + p \rightarrow n + e^+$

i)
$$e+p \rightarrow v_e + \pi^0$$
 j) $p+p \rightarrow \Sigma^+ + n + K^0 + \pi^0 + \pi^+$ k) $p \rightarrow e^+ + \gamma$

I)
$$p+p \rightarrow p+p+p+\overline{p}$$
 m) $n+\pi^+ \rightarrow \pi^- + p$ n) $n+\overline{n} \rightarrow \pi^+ + \pi^- + \pi^0$

o)
$$K^- \to \pi^- + \pi^0$$
 p) $n + \Sigma^+ \to p + \Sigma^-$ q) $\Sigma^0 \to \Delta + \gamma$ r) $\Xi^- \to \Lambda + \pi^-$

s)
$$\Xi^0 \to p + \pi^-$$
 t) $\pi^- + p \to \Lambda + K^0$ u) $\pi^0 \to \gamma + \gamma$ v) $\Sigma^- \to n + e + \overline{\nu}_e$

15. Algunos decaimientos son posibles por la acción de diferentes interacciones. Dibuje los diagramas de Feynman para los siguientes procesos, todos los cuales e han observado en los experimentos, indicando qué interacciones actúan:

a)
$$K^+ \rightarrow \mu^+ + \nu_\mu + \gamma$$

b)
$$\Sigma^+ \to p + \gamma$$

c)
$$\mu^- \to e^- + e^+ + e^- + \nu_{\mu} + \bar{\nu}_{e}$$

- 16. a) El mesón Υ , formado por b y \overline{b} , es el análogo al mesón ψ formado por c y \overline{c} . Su masa en 9460 MeV/ c^2 y su vida media 1.5 x 10^{-20} s. A partir de esto datos, ¿qué puede decir acerca de la masa del mesón B^- , formado por los quarks u y \overline{b} ?
- b) El mesón ψ ' de masa 3686 MeV/c² tiene igual contenido de quarks que el ψ . Su modo de decaimiento principal es ψ ' $\rightarrow \psi + \pi^+ + \pi^-$. Indique si el decaimiento anterior es fuerte, si es suprimido OZI y la vida media que es esperable para ψ '. (consultar libro de Griffiths)